推断的思路非常easy。若一棵树是平衡二叉树,它的左右子树都是平衡二叉树,而且左右子树的高度差小于等于1。注意。实现的时候,推断左右子树的平衡性时。能够顺便计算子树高度,不用再另外计算一次。以下是其递归实现:

#include <iostream>
using namespace std;
struct TreeNode {
	int val;
	TreeNode *left;
	TreeNode *right;
	TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
    bool isBalanced(TreeNode *root) {
        int height;
		return myBalance(root,height);
    }
	bool myBalance(TreeNode *root, int &height){//注意,将height用引用传进来
		if(root==NULL){//若为空,高度就为0,平衡
			height=0;
			return true;
		}
		int leftHeight;
		int rightHeight;
		bool leftBalance=myBalance(root->left,leftHeight);//root的左子树平衡吗?
		bool rightBalance=myBalance(root->right,rightHeight);//root的右子树平衡吗?
		height=max(leftHeight,rightHeight)+1;//以root为根的这棵树的高度。是root的左子树、右子树中的较高者加上root本身这个结点(即加1)
		if(leftBalance && rightBalance && abs(leftHeight-rightHeight)<=1)//假设左子树平衡,右子树平衡,而且左右子树高度差小于等于1
			return true;
		return false;
	}
};
int main()
{
	TreeNode *root=new TreeNode(1);
	TreeNode *left=new TreeNode(2);
	TreeNode *right=new TreeNode(3);
	root->left=left;
	root->right=right;
	Solution *s=new Solution();
	cout<<s->isBalanced(root)<<endl;
	system("pause");
	return 0;
}




posted on 2017-05-22 19:35  yutingliuyl  阅读(585)  评论(0编辑  收藏  举报